Board of County Commissioners

Chapter 15, Article X Wetland Conservation Ordinance

State of Wetlands Study Work Session

January 24, 2023

Background
Technical Study
Summary
Next Steps

Why Are We Here?

- -Update the Wetland Conservation Ordinance to better reflect Boarddirected policy and current regulatory climate
- Make permit process and outcomes more streamlined, predictable and consistent
 - Identify and protect natural resources that are most important, functional, or rare
 - Re-define and clarify review criteria
 - Identify opportunities for streamlining process
- -Balancing natural resource protection with property rights

- December 2021: Work session on current wetland permitting and review processes
- Fall/Winter 2022: Wetland Tours
- December 2022: Work session on Regulatory Framework Study
 - -Article X outdated; out of sync with policy and procedures
 - -Numerous regulations and policies at the State and other counties may be of benefit for consideration in a new Orange County code
 - During interviews with staff, consultants and NGOs, important feedback and ideas for consideration in the ordinance update were received

State of the Wetlands Study

- Most comprehensive recent study of its kind evaluating wetland changes over the past 30 years
- -Comparison of the historic inventory and condition of the County's wetland resources with present day using both mapping/aerials and field data
- Assessment of the functional changes and trends in wetland loss and wetland fragmentation
- -Analysis of ecosystem services associated with loss of wetland function

Background
Technical Study
Summary
Next Steps

Presentation Outline

Background

- Technical Study
 - Wetland Mapping
 - Wetland Fragmentation
 - Wetland Functional Changes
 - Additional Analyses

Summary

Next Steps

Wetland Mapping

- 1954 1996: Florida-wide studies have indicated significant loss of wetlands
- Rate of loss declined after implementation of wetland regulations such as:
 - 1972 Clean Water Act
 - 1987 No Net Loss Rule
 - 1989 Orange County Wetland
 Ordinance
- 1984-2004: Central FL study of isolated cypress systems showed 26% loss
- Impact is unequal by wetland type, leading to loss in diversity
- The SOTW provides a wetland inventory for Orange County from 1990-2020

Wetland Mapping – Methodology and API

- Used Aerial Photointerpretation (API) by trained ecologists/analysts
- API is standard acceptable method used to create Land-Use/Land-Cover (LULC) datasets and maps from remotely sensed data
- API has been used extensively since the 1970s by local, state, and federal agencies to classify land cover, vegetation and soils.
- Wetland signatures include vegetation, texture, soil hydration
- Decadal mapping: 1990-2020

Wetland Mapping – Selected Wetland Types

Wetland Mapping – Changes in Orange County Wetland Coverage

1990 Wetland Coverage

Total Wetland Acres = 159,346

2020 Wetland Coverage

Total Wetland Acres = 160,707

Wetland Mapping – Changes in Orange County Wetland Coverage

Wetland Mapping – Changes in Orange County Wetland Coverage

Wetland Mapping – Changes in Orange County Wetland Coverage

15

Wetland Mapping – Persistence Maps / Change Detection

Wetland Mapping – Persistence Maps (Wetlands Lost)

17

Wetland Mapping – Persistence Maps / Change Detection

Wetland Mapping – Persistence Maps (Wetlands Gained)

Wetland Mapping – Wetland Change

- Many of the surface water and wetlands do not appear to change in 30 years
- Succession is occurring in some wetlands (shrub to forested system)
- Changes equally occurring with losses of forested systems to shrub/herb systems (canopy removed)
- Changes in wetland type impact biodiversity

Presentation Outline

- Background
- Technical Study
 - Wetland Mapping
 - Wetland Fragmentation
 - Wetland Functional Changes
 - Additional Analyses
- Summary
- Next Steps

Wetland Fragmentation – Background

- Habitat destruction typically leads to fragmentation
- Division of habitat into smaller and more isolated fragments, separated by human-transformed land cover.
- Fragmentation impacts ecosystem function, hydrology, habitat, and species composition (i.e., invasive cover)
- Selected metrics compared:
 - Edge: perimeter of wetland
 - Shape Index: perimeter/Vpatch area
 - Contiguity: spatial connectiveness

Patch

Wetland Fragmentation – Changes from 1990 to 2020

The second		Total Edge (mi)			
	WETLAND TYPE	1990	2020	Trend	
	Cypress	564.74	754.90		
	Freshwater Marshes	1,008.19	1,194.72		
	Hydric Pine Flatwoods	129.44	371.21		
WIT PA	Mixed Scrub-Shrub Wetlands	697.80	815.60		
	Mixed Wetland Forests / Hardwoods	1,083.09	1,189.78		
	Other Wetlands	278.45	297.17		
	Wet Prairies	279.89	619.44		
NIE WY	Water	739.19	995.91		

Wetland Fragmentation – Changes from 1990 to 2020

the second		Mean Contiguity Index		
	WETLAND TYPE	1990	2020	Trend
	Cypress	0.90	0.89	
	Freshwater Marshes	0.83	0.77	
	Hydric Pine Flatwoods	0.92	0.89	
WP 23	Mixed Scrub-Shrub Wetlands	0.88	0.86	Ļ
	Mixed Wetland Forests / Hardwoods	0.89	0.88	
	Other Wetlands	0.85	0.81	
	Wet Prairies	0.82	0.78	Ļ
Mary -	Water	0.84	0.84	

Wetland Fragmentation – Changes from 1990 to 2020

Wetland Mapping and Fragmentation – Key Takeaways

- Between 1990-2020:
 - Overall loss of acreage is ~5.6% or ~8500 acres
 - Losses most dramatic for wet prairies (37%); mixed wetland forested/hardwoods systems (19%), all system types are important in order to achieve diversity
 - Gains in hydric pine flatwoods (>100%)
 - Composition of the wetland types is changing over time, with succession evident in some cases, and anthropogenic impacts in others
- Loss in acreage is not equivalent to change in wetland function
- Fragmentation impact on wetlands varies significantly by wetland type:
 - Moderate decline in contiguity and increased fragmentation for freshwater marshes and wet prairies
 - Cypress and hydric pine appear to be more robust and present less fragmentation impacts

Presentation Outline

- Background
- Technical Study
 - Wetland Mapping
 - Wetland Fragmentation
 - Wetland Functional Changes
 - Additional Analyses
- Summary
- Next Steps

Wetland Functional Changes – Field Assessment Methods

- Selected 50 onsite mitigation sites using CAI permit data
- Used a ranking mechanism for site selection
 - CAI permits issued >10 years ago
 - Prior to UMAM (or equivalent)
 - One of the five types: wetland forested mixed/wetland hardwoods, cypress, hydric pine, wet prairies, and freshwater marshes
- Objective:
 - Use for mapping quality assurance
 - Use as surrogate for functional change, looking beyond acre loss
- Metrics collected: functional data (UMAM), % invasive cover class
- Selected sites (15): using hyperspectral imaging using an UAS

Wetland Functional Changes – Interesting Findings

Threatened -State

Sarracenia minor (Hooded Pitcherplant)

Threatened - State

Tillandsia balbisiana (Northern Needleleaf)

Threatened -State

Dendrophylax porrectus (Jingle Bell Orchid)

Endangered - State

Tillandsia fasciculata (Cardinal Airplant)

Wetland Functional Changes –Summary Results

Wetland Type	Number of Sites	Permit UMAM	Current UMAM	% UMAM Change (Avg)	Number Sites Gained Function	Number Sites Lost Function	% Exotic Category (Avg)
Cypress	10	0.77	0.77	1%	6	4	2.70
Mixed Forested	20	0.77	0.71	-7%	6	14	2.70
Freshwater Marsh	12	0.83	0.74	-10%	1	11	2.60
Wet Prairie	2	0.70	0.83	19%	2	0	1.00
Hydric Pine	4	0.79	0.85	8%	3	1	1.25
Mixed Shrub	3	0.74	0.64	-12%	0	3	3.30
All Sites	51	0.78	0.74	-4%	18	33	2.51

Exotic %	Exotic %
Category	Present
1	< 1%
2	1% to 5%
3	5% to 25%
4	25% to 50%
5	> 50%

Wetland Functional Changes – Key Takeaways

- Some sites surrounded by development were of very high quality.
- Remote/rural sites maintained or gained wetland function over time.
- Wetland functional loss is highest for shrub systems, followed by freshwater marshes and mixed hardwoods.
- Wetland functional gains for wet prairies and pine flatwood systems.
- Many freshwater marshes are transitioning to a scrub-shrub or forested system.
- Hydrology impacts often lead to increased exotic presence.
- Exotic vegetation was often observed in the edges of the systems (initial 25').
- Higher level of assessment is needed when considering preserving/planting an upland buffer to avoid woody species from migrating into herbaceous systems.
- A robust maintenance program helps ensure long term health of the system.

Presentation Outline

- Background
- Technical Study
 - Wetland Mapping
 - Wetland Fragmentation
 - Wetland Functional Changes
 - Additional Analyses
- Summary
- Next Steps

Additional Analyses – State of the Wetland Study Report

- Correlations of population change with wetland coverage change and fragmentation metrics
- Correlations of wetland losses with impaired systems
- Examining functional loss in context with other variables: land use change, population growth and others
- Development of wetland health indices based on remote sensing (UAS analysis)
- Conceptual scenario estimate of wetland loss by 2050
- Impacts of wetland loss modeling

- Background
 Technical Study
- Summary
- Next Steps

- Approx. 5.6% loss of wetland acreage County-wide from 1990-2020 (excluding Lake Apopka North Shore restoration area)
 - Most acreage loss in wet prairies (37%), and mixed wetland forested/hardwoods systems (19%)
 - Some wetland types actually gained acreage: hydric pine flatwoods (>100%)
- Composition of wetland types is changing over time; some due to succession and others anthropogenic impacts
- Remote/rural sites were better at maintaining or gaining wetland function over time; some sites surrounded by development were also of very high quality
- Gain/loss of wetland functionality over time dependent on system type and other factors

- Background
 Technical Study
 Summary
- Next Steps

- April 11, 2023: Wetland Ordinance Board Discussion
- January 2023 May 2023: Internal draft ordinance meetings
- February 2023 June 2023: Stakeholder Charrettes
- July 2023 November 2023: LPA/EPC/DAB/SAB work sessions
- September 2023: BCC work session on draft ordinance
- December 2023: BCC ordinance adoption hearing